Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




One-Way Valve Procedure Alleviates Emphysema Patients

By HospiMedica International staff writers
Posted on 16 Jun 2015
Print article
Image: The Zephyr endobronchial valve (Photo courtesy of UAB).
Image: The Zephyr endobronchial valve (Photo courtesy of UAB).
A novel one-way valve blocks airflow to diseased regions of the lung, allowing healthy regions to expand and function more efficiently.

The Zephyr endobronchial valve (EBV) prevents airflow from entering into the diseased region while allowing trapped air and fluids to escape, thus achieving lung volume reduction. The unidirectional valves—either 4 mm or 5.5 mm in size—are implanted in a minimally invasive procedure using a bronchoscope equipped with a video camera. During the 60-minute procedure, 3–5 Zephyr valves are placed in the problematic airways of the lung. Once deployed, the self-expanding valve conforms to the bronchial wall and forms an air-tight seal, blocking airflow to the diseased regions.

A proprietary diagnostic device, the Chartis system, is utilized prior to the procedure to identify likely responders by measuring precise flow and pressure readings for specific lobes in the lungs to assess collateral ventilation. The system is based on a balloon catheter inserted through a bronchoscope to the target airway, which is inflated to block flow to the target region. The system then calculates airway resistance and measures closing volume (CV) in isolated lobes in the lung. A console displays expiratory air flow, pressure, and resistance measurements. The Zephyr EBV and Chartis system are products of PulmonX (Redwood City, CA, USA).

“The idea behind all lung-volume-reduction procedures is to allow the diaphragm to return to its normal shape and function. We're looking for a less invasive way to achieve that goal without the risks inherent in surgery,” said Associate Professor Mark Dransfield, MD, medical director of Lung Health Center at the University of Alabama at Birmingham (UAB; USA). “Patients need to have enough healthy lung tissue so that the blockage of the most diseased and damaged areas, and the reduced lung volume, will allow the healthier areas to function more normally.”

Advanced emphysema is a chronic, debilitating disease that causes irreversible damage to delicate lung tissue. It is characterized by reduced lung function, increased lung volume, and loss of the lung's natural elastic properties which makes breathing difficult. As the disease progresses and lung tissue is destroyed, excess air is trapped in the lungs, making it difficult for the person to exhale. This hyperinflation is responsible for feeling “short of breath,” manifested by continuous fatigue, chronic coughing, wheezing, and frequent respiratory infections.

Related Links:

PulmonX
University of Alabama at Birmingham


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Mattress Replacement System
Apollo Infant Dynamic
New
Total Ankle Prosthesis
SALTO TALARIS

Print article

Channels

Surgical Techniques

view channel
Image: The stretchy hydrogel and a vial of liquid polymer (Photo courtesy of WPI)

New Class of Bioadhesives to Connect Human Tissues to Long-Term Medical Implants

Medical devices and human tissues differ significantly in their composition. While medical devices are primarily constructed from hard materials like metal and plastic, human tissue is soft and moist.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.