We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Toxin-Absorbing Nanosponges Battle Bacterial Infections

By HospiMedica International staff writers
Posted on 01 Jun 2015
Print article
Image: Nanosponge-hydrogel treats local bacterial infections (Image: courtesy of Weiwei Gao/UCSD).
Image: Nanosponge-hydrogel treats local bacterial infections (Image: courtesy of Weiwei Gao/UCSD).
Toxin-absorbing nanosponges could provide localized therapy against virulent Methicillin-resistant Staphylococcus aureus (MRSA) infections, according to a new study.

Researchers at the University of California, San Diego (UCSD; USA) and Fudan University (Shanghai, China) developed the unihybrid nanomaterial by mixed nanosponges—nanoparticles coated in a red blood cell (RBC) membrane that absorb dangerous toxins produced by MRSA, E. coli, and other antibiotic-resistant bacteria—into a hydrogel made of water and polymers. The optimized hydrogel composition helps retain the toxin-absorbing nanosponges (masquerading as RBCs) in place, while not compromising toxin transport into the gel for neutralization.

Just one RBC membrane can be used to make thousands of polymer core nanosponges, each with a diameter of approximately 85 nanometers, i.e., 3,000 times smaller than the original RBC. The number of toxins each nanosponge could absorb depended on the toxin; in the case of MRSA, one nanosponge can absorb approximately 85 alpha-hemolysin toxins. The nanosponges have a half-life of 40 hours and eventually are metabolized, together with the sequestered toxins, in the liver.

In a murine model, MRSA infected skin lesions that were treated with the nanosponge-hydrogel were significantly smaller than those that were left untreated. The researchers also showed that two days after they were injected underneath the skin of a mouse, nearly 80% of the nanosponge-hydrogels were still found at the injection site. When the nanosponges were injected without the hydrogel, only 20% of them remained at the injection site after just two hours, with most of them diffusing to the surrounding tissues. The study was published on April 31, 2015, in Advanced Materials.

“We combined the strengths of two different materials, nanosponges and hydrogels, to create a powerful formulation to treat local bacterial infections,” said senior author Prof. Liangfang Zhang, PhD, of the school of engineering. “Nanosponges alone are difficult to use on local tissues because they diffuse away to other parts of the body very quickly. By integrating the nanosponges into a hydrogel, we can retain them at the site of infection.”

Related Links:

University of California, San Diego
Fudan University


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Hospital Bed
Alphalite
New
Diagnosis Display System
C1216W

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.