We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Bedside Monitoring of Brain Blood Flow in Stroke Victims

By HospiMedica International staff writers
Posted on 26 Mar 2009
Print article
A new study describes the first successful demonstration of a noninvasive optical device to monitor cerebral blood flow in patients with acute stroke, a leading cause of disability and death.

Researchers at the University of Pennsylvania (Penn, Philadelphia, USA) have developed diffuse correlation spectroscopy (DCS), a technology for noninvasive transcranial measurement of cerebral blood flow (CBF) that can be hybridized with near-infrared spectroscopy (NIRS). As part of the development, the research then examined the utility of DCS and NIRS to measure the effects of head-of-bed (HOB) positioning of the patient on CBF at 30 degrees, 15 degrees, 0 degrees, -5 degrees, and 0 degrees angulations in patients with acute ischemic stroke affecting the frontal cortex, as well as in controls. HOB positioning was found to significantly alter CBF, oxy-hemoglobin (HbO2), and total-hemoglobin (THC) concentrations. Moreover, the researchers also found that the presence of an ipsilateral infarct was a significant effect for all parameters. The results were found to be consistent with the notion of impaired CBF autoregulation in the infarcted hemisphere. The study was published in the March 2009 issue of Optics Express.

"Our preliminary study demonstrates that blood flow changes can be reliably detected from stroke patients and also suggests that blood flow responses vary significantly from patient to patient," said lead author Turgut Durduran, Ph.D., of the High Energy group at the department of physics.

"Stroke is caused by a reduction in blood flow to the brain, yet brain blood flow is rarely if ever measured in stroke patients because most existing methods to measure blood flow require costly instrumentation that is not portable," said clinical collaborator John Detre, M.D., of the department of neurology in the School of Medicine. "The ability to quantify tissue hemodynamics at the bedside would provide new opportunities both to learn more about blood-flow changes in patients with acute stroke and to optimize interventions to increase blood flow for individual patients, potentially even allowing these interventions to be administered before the onset of new neurological symptoms."

The new noninvasive system uses embedded optical probes that are placed over major cortical blood vessels in each hemisphere of the brain. The probes use diffusing light to detect physiological changes such as blood flow, blood-oxygen saturation (SpO2), and hemoglobin concentration to inform clinicians about their treatments. The system uses lasers, photon-counting detectors, radio-frequency electronics, data processors, and a computer monitor to display user-friendly images of functional information to physicians and nurses.

Related Links:

University of Pennsylvania




Gold Member
12-Channel ECG
CM1200B
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Blanket Warming Cabinet
EC250
New
Anterior Cervical Plate System
XTEND

Print article

Channels

Surgical Techniques

view channel
Image: Schematic diagram of intra-articular pressure detection using a sensory system in a sheep model (Photo courtesy of Science China Press)

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Knee replacement surgery is a widely performed procedure to relieve knee pain and restore joint function, with over one million surgeries conducted annually. However, 10%-20% of patients remain dissatisfied... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.