We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Biologic Implant Regrows Cartilage and Bone

By HospiMedica International staff writers
Posted on 19 Mar 2019
Print article
Image: A novel implant regenerates true hyaline cartilage and bone (Photo courtesy of CartiHeal).
Image: A novel implant regenerates true hyaline cartilage and bone (Photo courtesy of CartiHeal).
A novel cell-free biomaterial implant repairs cartilage and osteochondral defects in both traumatic and osteoarthritic joints.

The CartiHeal (Kfar Saba, Israel) Agili-C implant is designed to provide a scaffold that reproducibly regenerates hyaline cartilage and its underlying subchondral bone in a single-step procedure. Once the size of the defect is determined, a cavity is prepared in the affected area and the implant is inserted in a press fit manner. Blood immediately infiltrates the implant’s interconnected pores, initiating a biological cascade culminating in bone and hyaline cartilage regeneration through migration, adhesion, proliferation, and differentiation of mesenchymal stem cells (MSCs).

Within a few months, the top layer turns into true hyaline cartilage, while the bottom layer turns to bone, with each tissue genetically identical to the body’s own tissues. The regenerated cells gradually biodegrade the implanted scaffold over time. The rigid, bi-phasic implant is made of biocompatible and biodegradable aragonite, a naturally occurring crystal form of calcium carbonate (CaCO3) that forms the backbone of coral. The bone phase of the implant is composed of CaCO3 in crystalline form, and the cartilage phase is a composite of modified aragonite and hyaluronic acid (HA).

“Cartilage has very limited ability to be repaired. Finding a solution for cartilage regeneration is one of the holy grails of medicine. Millions of patients are looking for a solution to the degeneration of knee cartilage. We hope we can provide a breakthrough with our technology,” said Nir Altschuler, CEO and founder of CartiHeal. “Cartilage and bone cells adhere to the implant, while at the same time gradually degrading the calcium from the scaffold. Eventually the implant is almost fully degraded as bone and cartilage regrow.”

“As orthopedic surgeons, our goal is to prevent further erosion or cartilage damage within the knee, by promoting the growth of healthy cartilage,” said Guy Morag, MD, director of the sports medicine unit at Sourasky Medical Center (Tel Aviv, Israel), who is participating in CartiHeal's pivotal U.S. Food and Drug Administration (FDA) investigational device exemption (IDE) study. “The Agili-C implant leads to formation of high quality articular cartilage as well as underlying subchondral bone, which we haven't been able to achieve with other available modalities.”

CaCO3 is a common substance found in sedimentary rocks in mineral form, such as calcite and aragonite, most notably as limestone. It is also the main component in the shells of marine organisms, snails, and eggs. Marine CaCO3 skeletons, such as coral, have an architecture that gives them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone, and sea urchin spines have interconnected porous structures.

Related Links:
CartiHeal
Sourasky Medical Center

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Automated External Defibrillator
HeartStart OnSite AED
New
Orthopedic Navigation System
OrthoPilot Elite

Print article

Channels

Critical Care

view channel
Image: The study revealed how stress-related alterations in blood flow and blood vessel function are closely associated with heart disease (Photo courtesy of 123RF)

New Cardiovascular Risk Score Uses Stress Test to Predict Heart Disease More Accurately

A recent study has paved the way for the development of a new cardiovascular reactivity risk score, which could improve the ability to identify high-risk patients under stress and accelerate their diagnosis... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: Schematic diagram of a wireless, skin-contact system that simultaneously measures biosignals and delivers drugs (Photo courtesy of DGIST)

Versatile Smart Patch Combines Health Monitoring and Drug Delivery

As the global population ages, the need for personalized healthcare is becoming increasingly important. This shift has fueled a growing interest in wearable medical devices that can provide real-time health... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.