We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Artificial Joint Restores Natural Wrist Movements to Amputees

By HospiMedica International staff writers
Posted on 13 Dec 2018
Print article
Image: A wrist-like artificial joint acts interfaces between osseointegrated implants and a prosthetic hand (Photo courtesy of Chalmers University of Technology).
Image: A wrist-like artificial joint acts interfaces between osseointegrated implants and a prosthetic hand (Photo courtesy of Chalmers University of Technology).
A new study describes how an artificial joint reestablishes important wrist-like movements to forearm amputees, which could dramatically improve their quality of life.

Developed by researchers at Integrum (Mölndal, Sweden), Chalmers University of Technology (Göteborg, Sweden), and The BioRobotics Institute of Scuola Superiore Sant’Anna (Pontedera, Italy), the wrist prosthesis is based on an osseointegrated implant system placed into the two bones of the forearm--the ulna and radius--with an intermediate artificial joint that restores the functionality of the original distal-radioulnar joint, acting as an interface between the two osseous implants and the prosthetic hand.

By enabling the radius and the ulna to move with respect to each other, the natural range of wrist rotation is preserved, improving performance of activities of daily living and reducing compensatory movements that potentially lead to secondary health problems over time. The wrist device was fitted to an osseointegrated transradial amputee and its functionality assessed by a battery of tests, revealing that it can successfully restore natural forearm rotation, resulting in more naturalistic movements with intuitive natural control and sensory feedback. The study was published on November 13, 2018, in IEEE Transactions on Neural Systems & Rehabilitation Engineering.

“Depending on the level of amputation, you could still have most of the biological actuators and sensors left for wrist rotation. These allow you to feel, for example, when you are turning a key to start a car,” said senior author Max Ortiz Catalan, PhD, of Chalmers University of Technology. “You don't look behind the wheel to see how far to turn -- you just feel it. Our new innovation means you don't have to sacrifice this useful movement because of a poor technological solution, such as a socket prosthesis. You can continue to do it in a natural way.”

One of the major obstacles to an amputee in regaining a high level of function is the inability to rotate the wrist in order to perform pronation and supination movements. This twisting motion is used every day, whether to turn a door handle, use a screwdriver, start a car or simply to turn over a piece of paper. Current prosthetic technologies offer only limited relief to this problem.

Related Links:
Integrum
Chalmers University of Technology
The BioRobotics Institute of Scuola Superiore Sant’Anna


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Vital Signs Monitor
Vista 120 SC
New
Bariatric Flip Seat Scale
Detecto 6868

Print article

Channels

Critical Care

view channel
Image: The study revealed how stress-related alterations in blood flow and blood vessel function are closely associated with heart disease (Photo courtesy of 123RF)

New Cardiovascular Risk Score Uses Stress Test to Predict Heart Disease More Accurately

A recent study has paved the way for the development of a new cardiovascular reactivity risk score, which could improve the ability to identify high-risk patients under stress and accelerate their diagnosis... Read more

Surgical Techniques

view channel
Image: Application of Pericelle to the porcine model of femoral arterio-venous fistula (Photo courtesy of Bioactive Materials, DOI:10.1016/j.bioactmat.2024.10.005)

Nanotechnology-Based Drug Delivery System Could Help Dialysis and Heart Patients Avoid Repeat Surgeries

Revascularization procedures are essential for treating cardiovascular disease by restoring the necessary blood flow. For instance, a surgeon may transfer a vein from the leg to the heart to help patients... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.