We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Robotics Combined with AI Improves Safety in Emergency Stroke Surgeries

By HospiMedica International staff writers
Posted on 20 Jun 2024

Cardiovascular diseases remain the leading cause of death throughout Europe, resulting in over 4 million fatalities annually. More...

Mechanical thrombectomies (MT), which involve the surgical removal of blood clots from large blood vessels, have become a standard treatment for patients experiencing such blockages, particularly strokes. The time between the first onset of stroke symptoms to the initiation of treatment is critical; the sooner the clot is removed, the greater the chance that the patient will regain independence after a stroke. Researchers are now focusing on how surgical robots, autonomously guided by artificial intelligence (AI), might improve the safety and efficiency of these procedures.

Researchers at King’s College London (KCL, London, UK) utilized computer modeling to demonstrate that the initial step of the MT procedure, which involves navigating catheters and wires from the groin into the neck vessels, can be performed autonomously using AI navigation. The team adopted inverse reinforcement learning (IRL) to train new AI models. In their studies to assess the viability of IRL for navigation, they compared the effectiveness of single-device tracking (guidewire alone) versus dual-device tracking (catheter and guidewire together), finding both methods highly successful with success rates of 95% and 96%, respectively.

However, the dual-device tracking, which simulates the actions of an expert, showed that integrating IRL with a dense reward function, known as reward shaping, leads to higher overall success rates and reduced procedure times compared to existing methods. The model developed through reward shaping leverages demonstrator data via IRL to navigate towards the target effectively, while the dense reward function encourages quick and efficient progress towards the target, minimizing the number of steps needed.

"Our research uses AI to show, for the first time, how to autonomously navigate medical instruments from the groin to the neck in blood vessels. This is an important part of MT, which removes clots from blood vessels. We also explored various methods to teach the AI,” said King’s PhD student Harry Robertshaw. “We found that using real-life examples to guide the AI, a technique known as 'inverse reinforcement learning', improves its performance compared to the best current methods. Moving forward we can use these new techniques to create models that may be able to navigate unseen patient blood vessels, moving us closer to realizing the full benefits of robotic MT with autonomous assistance.”

“Our work is another step forwards towards improved procedural accessibility and precision of autonomous endovascular navigation tasks,” added Dr. Thomas Booth, Reader in Neuroimaging, School of Biomedical Engineering & Imaging Sciences. “For mechanical thrombectomy, the work plausibly lays the foundation for potentially transformative patient care - for example by treating patients more safely by using AI assistive navigation technologies.”

Related Links:
King’s College London


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Powered Surgical Stapler
ECHELON 3000 Stapler
New
Critical Care Cart
Avalo
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The new AI-based method can predict treatment outcomes from health record data (Photo courtesy of 123RF)

AI Tool Accurately Sorts Cancer Patients by Likely Outcomes

Pharmaceutical companies and healthcare providers often face the challenge of determining which patients will respond most effectively to a given drug. A new artificial intelligence (AI)-based method has... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.