We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New AI Algorithm Detects Rare Epileptic Seizures from EEG Data

By HospiMedica International staff writers
Posted on 07 Jun 2024

Over 65 million people around the globe are affected by epilepsy, a neurological disorder that impacts the nervous system and causes seizures. More...

Statistically, one in 26 individuals will experience epilepsy during their lifetime, and each year, 1 out of 1000 people with epilepsy die from unexpected deaths. Early detection is crucial for effective epilepsy treatment. Machine learning techniques have been employed to detect and classify seizures from electroencephalography (EEG) signals, which are captured using electrodes on the brain, identifying patterns too complex for human analysis alone. However, these systems have faced challenges in detecting rare forms of epileptic seizures due to their reliance on large data sets to learn patterns and make predictions, resulting in inadequate performance when encountering less common seizures. Researchers have now developed an advanced AI system capable of accurately detecting various types of epileptic seizures, thereby enhancing the diagnosis of rare and complex cases, even in young children.

The AI system, created by computer science researchers at the University of Southern California (Los Angeles, CA, USA), enhances the diagnosis of rare and complex epilepsy cases by analyzing brain interactions. This new system integrates multiple sources of information typically overlooked by AI systems in epilepsy detection, such as the positions of EEG electrodes and the brain regions they monitor. By doing so, the AI can identify patterns or features that signal an impending seizure. This approach enables the system to produce accurate results with minimal data, even for rare seizure types that have limited examples in the training data.

For example, in the case of atonic seizures—a rare type of seizure often affecting children and causing sudden loss of muscle control and collapse—the system focuses on spatial relationships in brain regions. It prioritizes brain areas involved in muscle control, such as the motor cortex, basal ganglia, cerebellum, and brainstem, to detect activity patterns indicative of atonic seizures. The researchers aim to supplement doctors' expertise in diagnosing difficult cases rather than replace them. They view this AI technology as a significant advancement in clinical neurology, with the potential to be integrated into wearable sensors that can relay information to a smartphone in the future.

“Brain seizures happen very suddenly, and so detecting seizures earlier really could save lives. The system could prompt an alert if it detects any irregularities in the brain waves. This would open up incredible opportunities for diagnosis and treatment of epilepsy,” said Cyrus Shahabi, a computer science, electrical engineering, and spatial sciences professor.

Related Links:
University of Southern California


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
Enteral Feeding Pump
Instilar 1420
New
Dual Chamber Warming Cabinet
D-Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.