We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New AI Algorithm Detects Rare Epileptic Seizures from EEG Data

By HospiMedica International staff writers
Posted on 07 Jun 2024
Print article
Image: The new AI system accurately detects epileptic seizure types (Photo courtesy of 123RF)
Image: The new AI system accurately detects epileptic seizure types (Photo courtesy of 123RF)

Over 65 million people around the globe are affected by epilepsy, a neurological disorder that impacts the nervous system and causes seizures. Statistically, one in 26 individuals will experience epilepsy during their lifetime, and each year, 1 out of 1000 people with epilepsy die from unexpected deaths. Early detection is crucial for effective epilepsy treatment. Machine learning techniques have been employed to detect and classify seizures from electroencephalography (EEG) signals, which are captured using electrodes on the brain, identifying patterns too complex for human analysis alone. However, these systems have faced challenges in detecting rare forms of epileptic seizures due to their reliance on large data sets to learn patterns and make predictions, resulting in inadequate performance when encountering less common seizures. Researchers have now developed an advanced AI system capable of accurately detecting various types of epileptic seizures, thereby enhancing the diagnosis of rare and complex cases, even in young children.

The AI system, created by computer science researchers at the University of Southern California (Los Angeles, CA, USA), enhances the diagnosis of rare and complex epilepsy cases by analyzing brain interactions. This new system integrates multiple sources of information typically overlooked by AI systems in epilepsy detection, such as the positions of EEG electrodes and the brain regions they monitor. By doing so, the AI can identify patterns or features that signal an impending seizure. This approach enables the system to produce accurate results with minimal data, even for rare seizure types that have limited examples in the training data.

For example, in the case of atonic seizures—a rare type of seizure often affecting children and causing sudden loss of muscle control and collapse—the system focuses on spatial relationships in brain regions. It prioritizes brain areas involved in muscle control, such as the motor cortex, basal ganglia, cerebellum, and brainstem, to detect activity patterns indicative of atonic seizures. The researchers aim to supplement doctors' expertise in diagnosing difficult cases rather than replace them. They view this AI technology as a significant advancement in clinical neurology, with the potential to be integrated into wearable sensors that can relay information to a smartphone in the future.

“Brain seizures happen very suddenly, and so detecting seizures earlier really could save lives. The system could prompt an alert if it detects any irregularities in the brain waves. This would open up incredible opportunities for diagnosis and treatment of epilepsy,” said Cyrus Shahabi, a computer science, electrical engineering, and spatial sciences professor.

Related Links:
University of Southern California

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Infusion Stand Rotatable Clamp
10-400 Infusion Stand Rotatable Clamp
New
Portable Color Doppler Ultrasound Scanner
DCU10

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Anovo robotic surgical platform is the world\'s first single port robotics platform approved for ventral hernia repairs in the US (Photo courtesy of Momentis Surgical)

Surgical Platform with Miniature Humanoid-Shaped Robotic Arms Provides Human Level Dexterity

A robotic surgical platform that mimics the natural movements of surgeons, utilizing shoulder, elbow, and wrist joints, revolutionizes their ability to replicate complete freedom of movement within the abdomen.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.