We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




AI Outperforms Humans in Diagnosis of Skin Lesions

By HospiMedica International staff writers
Posted on 26 Jun 2019
Print article
A new study shows that artificial intelligence (AI) machine-learning (ML) classifiers outperform human experts in the diagnosis of pigmented skin lesions.

Researchers at the Medical University of Vienna (MedUni; Austria), the University of Queensland (UQ; Brisbane, Australia), Tel Aviv University (TAU; Israel), and other member institutions of the International Skin Imaging Collaboration (ISIC) organized an international challenge to compare the diagnostic skills of 511 physicians with 139 computer algorithms from 77 different ML labs. A database of more than 10,000 images was used as a training set for the machines.

The database includes both benign and malignant pigmented lesions, which fell into one of seven pre-defined disease categories. These included intraepithelial carcinoma, including actinic keratoses and Bowen's disease; basal cell carcinoma; benign keratinocytic lesions, including solar lentigo, seborrheic keratosis and lichen planus-like keratosis; dermatofibroma; melanoma; melanocytic nevus; and vascular lesions. The two main outcomes were the differences in the number of correct specific diagnoses per batch between all human readers and the top three algorithms, and between human experts and the top three algorithms.

The results revealed that when comparing all human readers with all ML algorithms, the algorithms achieved a mean of 2.01 more correct diagnoses than the human readers. The 27 human experts with more than 10 years of experience achieved a mean of 18.78 correct answers, compared with 25.43 correct answers for the top three machine algorithms. For images in the test set that were collected from sources not included in the training set, humans still underperformed, but the difference was lower, at 11.4%. The study was published on June 11, 2019, in The Lancet Oncology.

“Two thirds of all participating machines were better than humans; this does not mean that the machines will replace humans in the diagnosis of skin cancer. The computer only analyzes an optical snapshot and is really good at it. In real life, however, the diagnosis is a complex task,” said lead author Philipp Tschandl, PhD, of MedUni Vienna. “Physicians usually examine the entire patient and not just single lesions. When humans make a diagnosis they also take additional information into account, such as the duration of the disease, whether the patient is at high or low risk, and the age of the patient.”

The rising popularity of ML techniques for medical applications is evident from the increasing amount of research, the number of products obtaining regulatory approvals, and entrepreneurial efforts over the past few years. Venture capital funding for healthcare AI startup companies was about USD 3.6 billion in the last five years, underscoring the increasing appreciation of the value that ML can potentially bring to the medical community.

Related Links:
Medical University of Vienna
University of Queensland
Tel Aviv University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Resting Electrocardiograph
ECG Top D/BT

Print article

Channels

Critical Care

view channel
Image: An in-situ curing strategy to develop a stretchable, semi-transparent, and durable GPE-TENG (Photo courtesy of Pandey et al. (2024), Chemical Engineering Journal; DOI: 10.1016/j.cej.2024.156650)

Gel-Based Stretchable Triboelectric Nanogenerators to Revolutionize Wearable Technology

Wearable technology, ranging from fitness trackers and smartwatches to medical sensors worn on the body, is revolutionizing our interaction with technology. As these devices gain in popularity, triboelectric... Read more

Surgical Techniques

view channel
Image: The first-ever surgery performed utilizing the MARS platform and Intuitive Da Vinci SP single-port robot (Photo courtesy of Levita Magnetics)

Revolutionary Robotic Surgery Combines Dual-System Technologies for Groundbreaking Prostate Procedure

In a pioneering advancement for robotic-assisted surgery, surgeons at UT Southwestern Medical Center (Dallas, TX, USA) have successfully performed the first-ever surgery utilizing two distinct systems... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.