Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Acoustic Device Determines Intracranial Pressure Values

By HospiMedica International staff writers
Posted on 21 Aug 2017
A new study describes how advanced acoustic signal analysis algorithms can be used to noninvasively evaluate intracranial pressure (ICP).

Researcher at Klinikum Stuttgart (Germany) and the University of Erlangen (Germany) used the HeadSense Medical (Netanya, Israel) HS-1000 device to generate and measure acoustic signals passing throughout the cranium. The six-second, 66 dB bursts of sound are emitted in one ear and received by sensors located in the opposite ear. Advanced signal analysis algorithms are used to evaluate properties of the acoustic signals for constant evaluation of ICP. Data corresponding to the 6-second epoch are recorded and displayed on the device monitor.

In a study of the new device, the researchers tested noninvasive ICP monitoring in 14 patients who were already receiving treatment for traumatic brain injury and/or subarachnoid hemorrhage in an intensive care unit (ICU), with invasive intraventricular or intraparenchymal monitoring catheters already in place. The researchers then compared ICP values obtained from a total of 2,543 data points of continuous ICP monitoring using the noninvasive HS-1000 device with concurrent ICP values obtained using invasive monitoring.

The results showed a strong association between ICP values obtained using both the noninvasive and invasive methods. Differences in mean ICP values were +/- 3 mm Hg in 63% of data-paired readings, and +/- 5 mm Hg in 85% of data-paired readings, similar to the differences found in studies that compared invasive intraventricular to intraparenchymal monitoring. The resulting sensitivity and specificity of the noninvasive ICP monitoring were determined to be 0.7541 and 0.8887, respectively. The study was published on August 8, 2017, in the Journal of Neurosurgery.

“Overall, the findings show a good correlation between ICP values obtained using noninvasive and invasive methods of monitoring,” concluded lead author Oliver Ganslandt, MD, of Klinikum Stuttgart, and colleagues. “Use of the device could protect patients from infection and hemorrhage, potential risks of invasive ICP monitoring, and also could aid clinicians in deciding when invasive ICP monitoring may be appropriate.”

Normal human ICP is 20 mm Hg or lower, but in the presence of disease or trauma, brain tissues may swell or cerebrospinal fluid (CSF) may increase in volume, causing ICP to increase. ICP monitoring of critical-care patients provides clinicians with the knowledge of whether and when action must be taken to decrease ICP. To perform invasive ICP monitoring, a catheter must be inserted through the patients into brain parenchyma or into a ventricle. An intraventricular catheter can be used both to monitor ICP and to reduce ICP.

Related Links:
Klinikum Stuttgart
University of Erlangen
HeadSense Medical

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Traumatic Brain Injury Whole Blood Test
i-STAT TBI CARTRIDGE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get complete access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.