Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Next-Gen Wearable Continuous Glucose Monitoring System to Revolutionize Diabetes Management

By HospiMedica International staff writers
Posted on 19 Sep 2024

Continuous glucose monitoring systems (CGMs) play a vital role in the closed-loop management of diabetes. With advances in the field, the demand for next-generation CGMs that offer improved noise resistance, reliability, and comfort has increased. As technological innovation for health continues globally, biomedical engineering research has emerged as a key driver. Now, a pioneering CGM system marks a significant breakthrough in wearable health technology and is poised to transform diabetes care.

The newly developed CGM system, named OECT-CGM, was created by a multidisciplinary research team, including investigators from The University of Hong Kong (HKU, Pokfulam, Hong Kong). The system is compact and coin-sized, integrating advanced biosensors, minimally invasive technologies, and hydrogels. The core innovation lies in its organic electrochemical transistor (OECT), a biochemical signal amplifier that greatly enhances the signal-to-noise ratio (SNR) compared to conventional electrochemical sensors. This improvement is crucial for providing more accurate and reliable glucose measurements, which are essential for effective diabetes management.

A microneedle array is incorporated into the OECT-CGM for subcutaneous glucose sampling, significantly reducing pain and discomfort, addressing a common issue with current CGMs that require needles under the skin. Additionally, a viscoelastic and diffusive hydrogel helps stabilize the interface between the device and the skin, ensuring the sensor remains securely in place and functional throughout its use. As reported in Science Advances, the OECTs within the integrated device achieved record-breaking sensitivity, representing a substantial leap forward in body-centered healthcare. In tests conducted on rodents, its performance matched that of existing commercial CGMs.

The research team anticipates that their development will push the capabilities of wearable biosensors, especially in challenging conditions, such as environments with high motion artifacts and ambient noise. The next phase of their work will focus on refining the device further and exploring its application across various healthcare scenarios.

“This fully integrated, wearable device promises enhanced anti-noise ability, reliability, and wearability compared to traditional CGMs,” said Professor Shiming Zhang of the Department of Electrical and Electronic Engineering at HKU who led the research team. “This groundbreaking work not only showcases the innovative capabilities of HKU team but also sets a new standard for wearable health monitoring technology.”

Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
A4 Medical Color Printer
UP-DR80MD
New
Auditory Evoked Potential Device
Bio-logic NavPRO ONE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get complete access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The stretchy hydrogel and a vial of liquid polymer (Photo courtesy of WPI)

New Class of Bioadhesives to Connect Human Tissues to Long-Term Medical Implants

Medical devices and human tissues differ significantly in their composition. While medical devices are primarily constructed from hard materials like metal and plastic, human tissue is soft and moist.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.