We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Wearable Ultrasound Navigation System Could Improve Lumbar Puncture Accuracy

By HospiMedica International staff writers
Posted on 26 Sep 2024
Print article
Image: The augmented reality navigation system could improve lumbar puncture accuracy (Photo courtesy of Clear Guide Medical)
Image: The augmented reality navigation system could improve lumbar puncture accuracy (Photo courtesy of Clear Guide Medical)

A lumbar puncture, or spinal tap, is a common medical procedure in which a hollow needle is inserted into the spinal canal to access cerebrospinal fluid that surrounds the brain and spinal cord. It is used to diagnose serious neurological conditions like meningitis or encephalitis and to administer anesthetics or chemotherapy. Physicians often refer to lumbar punctures as “blind bedside procedures” because they rely on feeling for the gap between two lumbar bones and then attempting to insert the needle in the correct location. This process can be particularly challenging in overweight or elderly patients. In some cases, the bony landmarks that guide the needle may not be easily felt, and in elderly patients, spinal degeneration adds to the difficulty. Multiple failed attempts can cause pain and increase the risk of blood contamination in the cerebrospinal fluid, potentially impacting the accuracy of diagnostic tests for conditions like meningitis, encephalitis, or subarachnoid hemorrhage. Now, researchers have developed an innovative ultrasound navigation system designed to provide accurate, real-time guidance for needle insertion during lumbar punctures.

The system, created by a team from Johns Hopkins University (Baltimore, MD, USA) and Clear Guide Medical (Baltimore, MD, USA), incorporates three key components to enhance needle accuracy: a cell phone-sized ultrasound scanner that can be attached to the patient’s skin along the lower spine, imaging algorithms that estimate bone surfaces, and an augmented reality display that superimposes a digital guide for needle insertion onto the view of the patient’s spine. This research builds on earlier findings, which demonstrated that the ultrasound scanner significantly improved visibility of the lumbar gap.

Published in IEEE Transactions on Medical Robotics and Bionics, the current study evaluated the overall accuracy of the navigation system, comparing two augmented reality methods: one using a tablet with camera-based tracking and the other using a head-mounted display similar to goggles, with optical-based tracking. Both approaches successfully guided needle placement, with an accuracy of 2.83 mm for the tablet and 2.76 mm for the head-mounted display, both within the 4 mm benchmark commonly used in spinal surgeries for needle placement precision.

The researchers also conducted a preliminary user study to gather feedback and compare the two augmented reality systems. Sixteen users completed eight sets of lumbar punctures using a realistic anatomical model (phantom) of the spine. The success rate for first-time needle insertions was 89%. On average, users required 1.14 attempts with the head-mounted display and 1.12 attempts with the tablet system to reach the target, defined as a rubber tube embedded in the phantom vertebrae canal. In comparison, other studies have shown that traditional methods using palpation often require multiple attempts. One study found that first-time needle insertion was successful in 71% of patients, while nearly 30% needed multiple attempts or failed entirely. Since completing this study, the researchers have replaced their needle tracking method using QR and other codes with artificial intelligence, simplifying the system for clinical use.

“This wearable ultrasound navigation system has several advantages over other imaging navigation methods,” said Peter Kazanzides, Ph.D., a research professor in computer science at Johns Hopkins University. “A pre-operative computed tomography scan would not be necessary, and clinicians would be able to use both hands to control the needle when using the navigation system. They currently use one hand to hold and guide the imaging probe and the other hand to insert the needle.”

“Our team at Hopkins is very excited about the direction we’re taking toward wearable ultrasound devices. Our device can capture the complex shape of lumbar bones without the shadows often seen in typical ultrasound scanners and it has the flexibility to adapt to motion,” added Emad Boctor, Ph.D., associate research professor at Johns Hopkins University and co-founder of Clear Guide Medical.

Related Links:
Johns Hopkins University
Clear Guide Medical

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Intensive Phototherapy Unit
BC 250 LCD
New
Urology Table
CFLU401

Print article

Channels

Critical Care

view channel
Image: The microfluidic chip analyzes the chemotactic migration behaviors of neutrophils in sepsis patients (Talanta, 2024; DOI: 10.1016/j.talanta.2024.126801)

Microfluidic Chip Method to Improve Sepsis Diagnosis, Progression Evaluation and Prognosis Monitoring

Sepsis, a severe and life-threatening condition, results from an uncontrolled immune response that can lead to multi-organ failure. Given its high mortality rate and the limitations of current diagnostic... Read more

Surgical Techniques

view channel
Image: Illustration of how the razor-sharp flakes of graphene line up together on a surface and can kill bacteria without harming healthy human cells (Photo courtesy of Yen Sandqvist)

Ultra-Thin Graphene-Based Coating Material Paves Way for Bacteria-Killing Medical Devices

Healthcare-associated infections are a significant global issue, leading to immense suffering, increased healthcare costs, and a greater risk of antibiotic resistance. These infections often occur when... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.