We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Edible Toothpaste-Based Transistor to Power Future Smart Pills for Monitoring Health Conditions

By HospiMedica International staff writers
Posted on 27 Sep 2024
Print article
Image: The toothpaste-based transistor could become a key component of future smart pills (Photo courtesy of IIT-Italian Institute of Technology)
Image: The toothpaste-based transistor could become a key component of future smart pills (Photo courtesy of IIT-Italian Institute of Technology)

Future smart pills are being developed to monitor health conditions from inside the body and dissolve safely after completing their task. Now, a breakthrough in edible electronics in the form of a toothpaste-based transistor could become a key component of these smart pills.

Many commercial toothpaste products contain crystals of copper phthalocyanine, a blue pigment used as a whitening agent. This pigment adheres to teeth, functioning as an optical filter to enhance their whiteness, and is gradually ingested throughout the day as it is removed by saliva. Researchers at the IIT-Italian Institute of Technology (Milan, Italy) studied the properties of copper phthalocyanine and, through lab simulations and analysis of existing clinical data, determined that on average, people ingest about 1 milligram of this substance every time they brush their teeth. With the amount ingested daily, it is theoretically possible to create around 10,000 edible transistors.

What makes copper phthalocyanine particularly interesting is its chemical structure, which supports charge conduction within its crystals, making it an ideal candidate for use as a semiconductor in organic electronics. The research team incorporated this pigment as a semiconductor into an existing formula for building edible circuits. These circuits are constructed on an ethylcellulose substrate, with electrical contacts printed using inkjet technology and a gold particle solution, commonly used in culinary decoration. A "gate" made from an electrolytic gel based on chitosan, a food-grade gelling agent derived from crustaceans like blue crabs, allows the transistor to function at a low voltage of less than 1V, according to the findings published in Advanced Science.

The next goal for the research team is to identify additional edible materials with suitable chemical and physical properties to create intelligent, ingestible electronic devices that could be used in healthcare applications, such as monitoring internal body parameters within the gastrointestinal tract.

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
AI-Enabled EEG Analysis Software
autoSCORE
New
Countertop Blanket Warmer
DC400

Print article

Channels

Surgical Techniques

view channel
Image: Illustration of how the razor-sharp flakes of graphene line up together on a surface and can kill bacteria without harming healthy human cells (Photo courtesy of Yen Sandqvist)

Ultra-Thin Graphene-Based Coating Material Paves Way for Bacteria-Killing Medical Devices

Healthcare-associated infections are a significant global issue, leading to immense suffering, increased healthcare costs, and a greater risk of antibiotic resistance. These infections often occur when... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.