We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Continuous Fetal Monitor Could Prevent Millions of Stillbirths

By HospiMedica International staff writers
Posted on 21 Aug 2019
Print article
A new study indicates that commercially available inertial sensors could potentially extract fetal heart rate (FHR) continuously and noninvasively.

Under development at the Stevens Institute of Technology (Hoboken, NJ, USA) and New York University (NYU, USA), the new FHR monitor is based on seismo-cardiogram (SCG) and gyro-cardiogram (GCG) recordings collected from inertial sensors that are currently used to re-orient displayed images on a smartphone when it is rotated to a horizontal or vertical position. The monitor is based on a setup that picked up signals from inertial sensors placed at three points on the mother’s abdomen, and then extracts FHR from a fused cepstrum of recordings from all the sensors.

The novel monitor was evaluated with experiments on ten pregnant women under supine, seated, and standing positions, with the results compared to simultaneously recorded fetal cardiotocography (fCTG) readings, which are based on Doppler ultrasound. When matching the two modalities, the reliability was found to be quite comparable, with the supine position showing the highest correlation. A further advantage is that the monitor measures fetal movements without the mother’s active participation. The researchers claim that being able to assess both FHR and movement at the same time could help rule out fetal distress. The study was published on July 24, 2019, in IEEE Sensors Journal.

“Almost one-third of stillbirths occur in the absence of complicating factors; our device could let a pregnant woman know if her fetus is compromised and she needs to go to the doctor,” said senior author Negar Tavassolian, PhD, of the Stevens Institute of Technology. “Wearable inertial sensors could potentially be used to extract FHR outside the clinic, with accuracy and reliability metrics comparable to other modalities, such as fCTG. Our monitors are also completely passive, so there's no health concern.”

A normal FHR usually ranges from 120 to 160 beats per minute (bpm) in the in-utero period. It is measurable sonographically from around six weeks and the normal range varies during gestation, increasing to around 170 bpm at 10 weeks and decreasing from then to around 130 bpm at term.

Related Links:
Stevens Institute of Technology
New York University

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Vein Illuminator
VSI

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Surgical Techniques

view channel
Image: NTT and Olympus have begun the world\'s first joint demonstration experiment of a cloud endoscopy system (Photo courtesy of Olympus)

Cloud Endoscopy System Enables Real-Time Image Processing on the Cloud

Endoscopes, which are flexible tubes inserted into the body's natural openings for internal examination and biopsy collection, are becoming increasingly vital in medical diagnostics. Their minimal invasiveness... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.