We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




MRI-Guided Microscopic Robots Eliminate Liver Tumors

By HospiMedica International staff writers
Posted on 19 Feb 2024
Print article
Image: Microrobots piloted by a magnetic field can treat liver cancer (Photo courtesy of 123RF)
Image: Microrobots piloted by a magnetic field can treat liver cancer (Photo courtesy of 123RF)

Hepatocellular carcinoma, the most common type of liver cancer, is a global health challenge, causing approximately 700,000 deaths annually. The current primary treatment modality is transarterial chemoembolization. This technique delivers chemotherapy directly into the artery supplying the liver tumor and blocks the tumor's blood supply using microcatheters, guided by X-ray. However, this method is invasive and demands highly skilled medical professionals. Now, a novel approach for treating liver tumors that uses magnet-guided microrobots in an MRI device could revolutionize interventional radiology approaches used to treat liver cancers.

The concept of injecting microscopic robots into the bloodstream for therapeutic purposes has been around for some time. Miniature robots, composed of biocompatible, magnetizable iron oxide nanoparticles and directed by an external magnetic field, can theoretically offer highly precise medical treatments. A key challenge has been that the gravitational force on these microrobots is greater than the magnetic force, affecting their navigation, especially when the target tumor lies above the injection site. While MRI machines produce a strong magnetic field, the magnetic gradients for navigation and image generation are relatively weak. Researchers at the University of Montreal Hospital Research Centre (CRCHUM, Quebec, Canada) have developed an innovative algorithm. This algorithm calculates the optimal positioning of the patient’s body within a clinical MRI to utilize gravity in conjunction with magnetic navigation forces, facilitating the movement of microrobots to arterial branches feeding the tumor and thereby conserving healthy cells.

This magnetic resonance navigation method can be implemented with an implantable catheter similar to those used in chemotherapy. Another advantage is that tumors are more clearly visible in MRI than in X-ray imaging. The researchers have created an MRI-compatible microrobot injector, assembling 'particle trains' - aggregates of magnetizable microrobots with enhanced magnetic force, making them easier to steer and detect in MRI images. This enables precise control of both the direction of the microrobot 'train' and the adequacy of the treatment dosage. As each microrobot is intended to deliver a fraction of the treatment, quantifying them is crucial for radiologists. Although this scientific advancement marks significant progress, its clinical application remains some distance away. Further, scientists must develop models to simulate blood flow, patient positioning, and magnetic field orientation. This modeling, predicting the fluid flow through vessels, will enhance the precision of microrobot transport to the target tumor, refining the accuracy of this innovative approach.

“First of all, using artificial intelligence, we need to optimize real-time navigation of the microrobots by detecting their location in the liver and also the occurrence of blockages in the hepatic artery branches feeding the tumor,” said Dr. Gilles Soulez, a researcher at the CHUM Research Centre.

Related Links:
CRCHUM

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Portable HF X-Ray Machine
PORTX
New
Phlebotomy Chair
CHE03/BH

Print article

Channels

Critical Care

view channel
Image: The schematic illustration of the synthesis process of Qx-D (A) and the rat model of femoral infectious bone defect (B) (Photo courtesy of Fu-Jian Xu Lab/BUCT)

Groundbreaking Dual-Functional Bone Regeneration Scaffold Shows Promise for Infected Bone Defect Treatment

Managing infected bone defects (IBDs) has long been a significant challenge in orthopedic medicine. However, recent advancements in biomaterials have led to the development of innovative bone regeneration... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.