We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Light Amplification Continuously Monitors Blood Coagulation

By HospiMedica International staff writers
Posted on 14 Mar 2017
A novel optical device can facilitate real-time monitoring of blood clotting in the operating room (OR), according to a new study.

Developed by researchers at the University of Central Florida, the new device involves an optical fiber sensor that uses coherence-gated light scattering to constantly monitor blood coagulation. More...
The device is based on accurate measurement of the non-ergodic, complex fluid dynamics of flowing blood by controlling and quantifying its spatiotemporal optical coherence under heterodyne amplification, or in other words the amplification of an optical signal by frequency conversion.

The device does so y beaming light at flowing blood passing through standard vascular-access tubing, and detects it as it bounces back. The light backscatter then determines how rapidly the red blood cells (RBCs) in the blood are vibrating; slow vibration is a sign that the patients’ blood is clotting, and using a blood-thinner may become necessary. The optical fiber-based tool can be directly incorporated into a range of medical devices to replace standard coagulation tests. The study describing the device was published online on February 10, 2017, in Nature Biomedical Engineering.

“I absolutely see the technique having potential in the intensive care setting, where it can be part of saving the lives of critically ill patients with all kinds of other disorders,” said study co-author Professor William DeCampli, MD, of UCF College of Medicine, and chief of pediatric cardiac surgery at Arnold Palmer Hospital for Children (Orlando, FL, USA). “These things come about because of collaboration between a top-ranked engineering university and a top-ranked children's hospital, all in one city. I think it's the perfect way to make advances in medicine that are at the engineering frontiers.”

Complex fluids are binary mixtures that demonstrate coexistence between two phases; blood is an example of such a complex fluid, as a solid–liquid suspension of macromolecules. Its non-ergodic nature is demonstrated by unusual mechanical responses that show transitions between solid-like and fluid-like behavior, as well as fluctuations. The mechanical properties can be attributed to characteristics such as high disorder, caging, and clustering on multiple length scales.


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Infusion System
SIGMA Spectrum
New
Mattress System
Apollo Infant Dynamic
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: the deep tissue in vivo sound printing (DISP) platform, which combines ultrasound with low-temperature–sensitive liposomes loaded with crosslinking agents (Photo courtesy of Elham Davoodi and Wei Gao/Caltech)

New Ultrasound-Guided 3D Printing Technique to Help Fabricate Medical Implants

3D bioprinting technologies hold considerable promise for advancing modern medicine by enabling the production of customized implants, intricate medical devices, and engineered tissues designed to meet... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.