We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Human Torso Simulator Helps Design Brace Innovations

By HospiMedica International staff writers
Posted on 14 Aug 2019
Print article
Image: A mechanical torso aids back brace design (Photo courtesy of Lancaster University).
Image: A mechanical torso aids back brace design (Photo courtesy of Lancaster University).
A simulator that mimics the mechanical behavior of the human torso allows researchers to test different back brace designs and configurations without needing to test them on people.

Developed at Lancaster University (United Kingdom), the simulator is composed of a male torso-shaped mechanical test rig and a three-dimensionally (3D) printed spine and rib cage, which was created using modified computer aided design (CAD) models derived from CT scans of a human spine. The test rig allows for different spine configurations and deformities, such as scoliosis, to be modeled and tested with different back braces, all without causing discomfort to human testers, thus removing significant logistical and ethical issues.

With geometries that resemble human tissues, and with the aid of computer simulation physiological models, researchers can collect important data on the reduction of flexion, extension, lateral bending, and torsion for each back brace design examined. The researchers have already tested the rig with two novel back brace designs, one an existing medical back brace and the other a weightlifting belt. The study describing the development and testing process was published on July 30, 2019, in Computer Methods in Biomechanics and Biomedical Engineering.

“Back braces have been used as both medical and retail products for decades, however existing designs can often be found to be heavy, overly rigid, indiscrete, and uncomfortable,” said senior author engineer David Cheneler, PhD. “Our simulator enables new back braces to be developed that are optimized to constrain particular motions but allowing for other movements. It could also help with the design of braces and supports with targeted restriction of movement, which would be beneficial to some conditions and helping to reduce the risk of muscle-loss.”

Back braces are designed to limit spine motion in cases of fracture or in post-operative fusions, as well as a preventative measure against some progressive conditions. The two most common back braces include rigid braces that restrict motion by as much as 50%; and soft, elastic braces that limit forward motion of the spine and support it during occasions of stress (such as lifting of heavy loads) or post-operatively to assist in setting spinal fusions.

Related Links:
Lancaster University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Lithotripter
Swiss LithoClast Trilogy
New
Mattress
Powered Therapeutic Mattress

Print article

Channels

Critical Care

view channel
Image: The non-invasive brain scanners enable faster detection and triage of TBI and stroke patients (Photo courtesy of Sense Neuro Diagnostics)

Non-Invasive Brain Scanner to Enable Real-Time Brain Injury Monitoring and Rapid TBI Detection

Over 15 million people suffer from strokes and more than 50 million people experience a traumatic brain injury (TBI) every single year. If suffering from a stroke or TBI, the goal is to get to a hospital... Read more

Surgical Techniques

view channel
Image: Expanded stent physically opens a blocked blood vessel (Photo courtesy of KIST)

Laser Patterning Technology Revolutionizes Stent Surgery for Cardiovascular Diseases

As societies around the world age, the prevalence of vascular diseases among older populations is increasing, highlighting the growing need for therapeutic stents. These devices, which help maintain blood... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.