We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Tool Helps Identify Heart Failure Risk in Diabetes Patients

By HospiMedica International staff writers
Posted on 25 Oct 2024

Diabetic cardiomyopathy is a heart condition marked by abnormal changes in the structure and function of the heart, which increases the risk of heart failure in patients. More...

Defining this condition has been challenging due to its asymptomatic early stages and the varied effects it can have on the heart. Machine learning has emerged as a tool to identify high-risk patients, potentially providing a more nuanced approach compared to traditional diagnostic methods. Researchers have now created a machine learning model capable of identifying patients with diabetic cardiomyopathy. The findings, published in the European Journal of Heart Failure, present a data-driven strategy to detect a high-risk diabetic cardiomyopathy phenotype, facilitating early interventions that could help prevent heart failure in this vulnerable group.

Phenotypes refer to the observable physical characteristics of individuals that confer specific biological traits. Researchers at UT Southwestern Medical Center (Dallas, TX, USA) analyzed data from the Atherosclerosis Risk in Communities cohort, which consisted of over 1,000 participants with diabetes but no prior history of cardiovascular disease. By examining a set of 25 echocardiographic parameters and cardiac biomarkers, the team identified three patient subgroups. One of these subgroups, comprising 27% of the cohort, was classified as the high-risk phenotype. Patients in this group showed significantly elevated levels of NT-proBNP, a biomarker associated with heart stress, along with abnormal heart remodeling features such as increased left ventricular mass and impaired diastolic function. Notably, the five-year incidence of heart failure in this subgroup was 12.1%, which was considerably higher than that in the other groups.

Following these findings, the researchers developed a deep neural network classifier to identify diabetic cardiomyopathy. When validated on additional cohorts, the model detected between 16% and 29% of diabetic patients as having the high-risk phenotype. These patients consistently displayed a higher incidence of heart failure. Clinically, this model could assist in targeting intensive preventive therapies, such as SGLT2 inhibitors, which are medications used to manage Type 2 diabetes, to those patients who are most likely to benefit. It may also enhance clinical trials focused on heart failure prevention strategies in diabetic patients. By offering a new method to identify individuals at risk for heart failure, the model could enable earlier and more proactive interventions, thereby improving patient outcomes and influencing future research in cardiovascular care.

“This research is noteworthy because it uses machine learning to provide a comprehensive characterization of diabetic cardiomyopathy – a condition that has lacked a consensus definition – and identifies a high-risk phenotype that could guide more targeted heart failure prevention strategies in patients with diabetes,” said senior author Ambarish Pandey, M.D., Associate Professor of Internal Medicine in the Division of Cardiology at UT Southwestern. “This builds on our previous work that evaluated the prevalence and prognostic implications of diabetic cardiomyopathy in community-dwelling adults. It extends those efforts by using machine learning to identify a more specific high-risk cardiomyopathy phenotype.”

 


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Knee Arthroscopy Holder
Reison 10-353 XL
New
Endoscopy Display
E190
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.