We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Wearable Lung Patch Accurately Detects Asthma and COPD

By HospiMedica International staff writers
Posted on 12 Sep 2024
Print article
Image: The microchip sensor is slightly larger than a penny (Photo courtesy of StethX and Georgia Institute of Technology)
Image: The microchip sensor is slightly larger than a penny (Photo courtesy of StethX and Georgia Institute of Technology)

Globally, asthma and chronic obstructive pulmonary disease (COPD) are significantly underdiagnosed, with rates ranging from 20-70% for asthma and up to 81% for COPD. Early detection and management are crucial for these chronic respiratory diseases. A common indicator of these conditions is wheezing, a high-pitched whistling sound caused by inflammation and narrowing of the airways. Physicians typically use digital stethoscopes, considered the gold standard, to listen to and record abnormal lung sounds like wheezing and crackles—clicking or rattling sounds that often accompany wheezing. They analyze these recordings to determine whether they capture wheezing, crackling, or normal breath sounds. Currently, the standard method for identifying wheezing involves a computerized time-frequency analysis, which relies on a checklist algorithm. However, this method is not comprehensive, resulting in some cases being missed. There is a need for an advanced technological solution that can serve as a screening tool in clinical settings and for remote patient monitoring, allowing physicians to intervene early.

Researchers at the Georgia Institute of Technology (Atlanta, GA, USA) have developed a deep learning (DL) model paired with a wearable patch equipped with a highly sensitive sensor capable of automatically detecting wheezing sounds. This DL model has the potential to classify respiratory diseases, potentially speeding up diagnosis and treatment. Unlike traditional microphones in digital stethoscopes, the microchip sensor in the wearable patch can detect tiny vibrations with high sensitivity and minimal distortion. For the development of the DL model, lung sound recordings were collected from 52 patients in an outpatient asthma clinic or hospital setting. Twenty-five of these patients were obese, a condition that can reduce the quality of traditional lung recordings.

To obtain the recordings, patients wore the miniature patch on up to nine different sites on their chest. Data was recorded from each location while the patient took deep breaths for 30 seconds. For comparison, physicians also took lung recordings using digital stethoscopes at the same chest sites. The recordings from both sources were reviewed in a blinded experiment, with physicians labeling whether they heard wheezing and providing a diagnosis after the clinical evaluation. The labeled wheezes from the digital stethoscope and the wearable patch were highly consistent, even for obese patients. These clinician-labeled data were then incorporated into the DL model, enabling it to distinguish between wheezing sounds and normal breath sounds.

The researchers compared the performance of the DL model to the standard time-frequency method for detecting wheezing, both when paired with the patch and the digital stethoscope. The results of the pilot study, published in BioSensors, showed that the DL model paired with the patch consistently outperformed the other methods, achieving the highest average accuracy, sensitivity, and specificity rates for wheeze detection at 95%, 96%, and 93%, respectively. This combination surpassed the time-frequency method paired with either the patch or the digital stethoscope, as well as the DL model paired with the digital stethoscope. The researchers envision two potential applications for the wearable patch framework: short-term screening in clinical settings and long-term home monitoring. They are currently developing a wireless version of the patch for remote monitoring, which could transmit data to a patient's physician to facilitate timely treatment.

“Our sensitive patch has many advantages over traditional wheeze detection, which struggles to detect all variations of wheezes and crackles, which can lead to misdiagnosis,” said Farrokh Ayazi, Ph.D., senior study author and a professor in electrical and computer engineering at Georgia Institute of Technology. “By incorporating data from these wheeze variations into a deep learning model, and by taking advantage of the sensor’s ability to eliminate ambient sounds, our detection method led to higher accuracy, sensitivity [it correctly identified the presence of a wheeze], and specificity [it correctly identified absence of a wheeze] compared to the standard time-frequency approach.”

Related Links:
Georgia Institute of Technology

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
New
Hospital Data Analytics Software
OR Companion
New
Phototherapy Eye Protector
EyeMax2

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.