We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Events

27 Jan 2025 - 30 Jan 2025
15 Feb 2025 - 17 Feb 2025

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

By HospiMedica International staff writers
Posted on 03 May 2024
Print article
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings. While there are existing AI models for echocardiograms, these are typically trained on relatively small datasets comprising tens of thousands of examples. In a significant advancement, a team of AI experts has now compiled a dataset that includes over one million echocardiograms, or cardiac ultrasound videos, complete with clinical interpretations. Utilizing this vast database, they have developed EchoCLIP, a sophisticated machine-learning algorithm capable of interpreting echocardiogram images and analyzing crucial findings.

The team of investigators at Cedars-Sinai (Los Angeles, CA, USA) built a dataset of 1,032,975 cardiac ultrasound videos and corresponding expert interpretations. This extensive collection enabled the development of EchoCLIP, which offers clinician-level evaluations of heart function, past surgeries, and implanted devices. Moreover, EchoCLIP can identify a single patient across multiple videos and timepoints, recognizing clinically significant changes in heart conditions. EchoCLIP holds promise in revolutionizing how cardiologists assess echocardiograms by providing preliminary cardiac assessments, tracking changes over time, and identifying common cardiac conditions.

In studies, EchoCLIP has demonstrated high accuracy in measuring cardiac function and identifying devices such as pacemakers and repaired mitral and aortic valves. Additionally, it has proven capable of recognizing unique patients across different studies and detecting important clinical changes like post-surgical modifications. The development of EchoCLIP has also facilitated the generation of preliminary text interpretations of echocardiogram images, further enhancing its utility in clinical settings.

“To our knowledge, this is the largest model trained on echocardiography images,” said corresponding author David Ouyang, MD, a faculty member in the Department of Cardiology at the Smidt Heart Institute. “EchoCLIP’s uniquely strong performance in image interpretation is a result of its training on almost tenfold more data than existing models. Our results suggest that large datasets of medical imaging and expert-adjudicated interpretations can serve as the basis for training medical foundation models, which are a form of generative artificial intelligence.”

Related Links:
Cedars-Sinai

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Diagnostic Ultrasound System
MS1700C
New
Monitor Cart
Tryten S5

Print article

Channels

Surgical Techniques

view channel
Image: The surgical team and the Edge Multi-Port Endoscopic Surgical Robot MP1000 surgical system (Photo courtesy of Wei Zhang)

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Telemedicine enables patients in remote areas to access consultations and treatments, overcoming challenges related to the uneven distribution and availability of medical resources. However, the execution... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.