We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Magnetically Controlled Implant Helps Relieve Neural Pain

By HospiMedica International staff writers
Posted on 04 Mar 2020
Print article
Image: The MagNI integrated microsystem (Photo courtesy of Rice University)
Image: The MagNI integrated microsystem (Photo courtesy of Rice University)
A novel implant can provide programmable, electrical stimulation of neurons, helping patients with epilepsy or Parkinson’s disease (PD) control pain.

Developed at Rice University (Rice, Houston, TX, USA), the magnetoelectric neural implant (MagNI) microsystem incorporates transducers that ride on a flexible polyimide substrate with only three components: a 2-by-4-millimeter magnetoelectric film that converts the magnetic field to an electric field, a complementary metal-oxide semiconductor (CMOS) chip, and a capacitor to temporarily store energy from an alternating magnetic field outside the body. MagNI is calibration free and robust, and does not require any internal voltage or timing reference. An example of such an embedded device could be a spinal cord-stimulating (SCS) unit with a battery-powered magnetic transmitter on a wearable belt.

According to the developers, MagNI has clear advantages over current stimulation methods, including ultrasound, electromagnetic radiation, inductive coupling and optical technologies. For one, tissues do not absorb magnetic fields as they do during electromagnetic and optical radiation or inductive coupling signals, and thus MagNI does not heat up tissues. And while ultrasound does not have heating issues, the waves are reflected at interfaces between different mediums, such as hair, skin, or bones. The system was presented at the annual International Solid-State Circuits Conference (ISSCC) held during February 2020 in San Francisco (CA, USA).

“This is the first demonstration that you can use a magnetic field to power an implant, and also to program the implant,” said device co-developer and presenter Kaiyuan Yang, PhD, an assistant professor of electrical and computer engineering at Rice. “By integrating magnetoelectric transducers with CMOS technologies, we provide a bioelectronic platform for many applications. CMOS is powerful, efficient and cheap for sensing and signal processing tasks.”

CMOS chips are more known for their use as image sensors. But it can also be used as a magnetic label detector, by identifying the magnetic relaxation signature of microbead labels. This is achieved by measuring the production of a voltage difference (the Hall voltage) across an electrical conductor, which is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current.

Related Links:
Rice University

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Monitor Cart
Tryten S5
New
Hospital Data Analytics Software
OR Companion

Print article

Channels

Surgical Techniques

view channel
Image: The DigiLoupes Headset (Photo courtesy of Ocutrx Technologies)

Innovative Headset Featuring Advanced AR, XR and Pancake Lens Technology to Transform Surgery

A cutting-edge headset incorporating advanced augmented reality (AR), XR, and state-of-the-art lens technologies has been developed to replace traditional "chin-on-chest" medical loupes, offering a significant... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.