We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Wearable Sensor Facilitates Environmental and Health Monitoring

By HospiMedica International staff writers
Posted on 29 Jan 2020
Print article
Image: A wearable sensor monitors various gases (Photo courtesy of Cheng lab/ PSU)
Image: A wearable sensor monitors various gases (Photo courtesy of Cheng lab/ PSU)
A novel gas sensing platform can detect chemical and biological agents that may damage the nerves or lungs, according to a new study.

Under development at Hebei University of Technology (Tianjin, China), South China University of Technology (SCUT; Guangzhou, China), Pennsylvania State University (PSU; Hershey, USA), and other institutions, the gas sensing platform is based on a highly porous laser-induced graphene (LIG) pattern that consists of the actual sensing region and a serpentine interconnected region coated with silver. When an electrical current is applied to the silver, the gas sensing region heats up, improving sensing performance of the interdigitated electrode (IDE) nanomaterial sensors.

The nanomaterials used in the sensing platform are reduced graphene oxide and molybdenum disulfide, a combination of the two, or a metal oxide composite consisting of a core of zinc oxide and a shell of copper oxide. These material represent the two major classes of widely used gas sensor materials - low-dimensional and metal oxide nanomaterials. By dispersing nanomaterials with different selectivity in the sensing region, a range of various gaseous components could be potentially deconvoluted. The study was published in the January 2020 issue of Journal of Materials Chemistry A.

“Using a CO2 laser, often found in machine shops, we can easily make multiple sensors on our platform. We plan to have tens to a hundred sensors, each selective to a different molecule, like an electronic nose, to decode multiple components in a complex mixture,” said senior author Huanyu Cheng, PhD, of Penn State. “The problem is the nanomaterial is not something we can easily hook up to with wires to receive the signal, necessitating the need for something called interdigitated electrodes, which are like the digits on your hand.”

“In this paper, we showed that we could detect nitrogen dioxide produced by vehicle emissions. We can also detect sulfur dioxide, which, together with nitrogen dioxide, causes acid rain. All these gases can be an issue in industrial safety,” said co-lead author Ning Yi, MSc, of PSU. “The next step is to create high-density arrays and try some ideas to improve the signal and make the sensors more selective. This may involve using machine learning to identify the distinct signals of individual molecules on the platform.”

Related Links:
Hebei University of Technology
South China University of Technology
Pennsylvania State University


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Diagnosis Display System
C1216W
New
Anterior Cervical Plate System
XTEND

Print article

Channels

Surgical Techniques

view channel
Image: The DigiLoupes Headset (Photo courtesy of Ocutrx Technologies)

Innovative Headset Featuring Advanced AR, XR and Pancake Lens Technology to Transform Surgery

A cutting-edge headset incorporating advanced augmented reality (AR), XR, and state-of-the-art lens technologies has been developed to replace traditional "chin-on-chest" medical loupes, offering a significant... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.