We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Miniaturized Device Measures Baby's Blood Oxygen Levels

By HospiMedica International staff writers
Posted on 04 Dec 2019
Print article
Image: The prototype transcutaneous PaO2 sensing platform (Photo courtesy of WPI)
Image: The prototype transcutaneous PaO2 sensing platform (Photo courtesy of WPI)
A new study describes how a wearable sensor monitors partial pressure of oxygen (PaO2) levels by measuring blood gases diffusing through the skin.

Developed by researchers at Worcester Polytechnic Institute (WPI; MA, USA) and the University of Massachusetts Medical School (UMASS; Worcester, MA, USA), the prototype transcutaneous PaO2 sensing platform is based on a blue light emitting diode (LED) with peak emission wavelength of 450 nm, which excites a Platinum-porpyrin thin film. The re-emitted red light, with peak emission wavelength of 650 nm, is then captured by a photodiode. The monitor connects to the Internet wirelessly, so that an alarm in a doctor's office or on a smartphone app can notify medical personnel and family members if the baby's oxygen level begins to drop.

Typically, measuring oxygen molecule levels transcutaneously involves sensors that generally are hard-wired to a bedside monitor. But unlike the current systems used in hospitals, the miniaturized wearable device will be flexible and stretchable, wireless, inexpensive, and mobile, allowing the child to leave the hospital and be monitored remotely. A study describing the transcutaneous PaO2 sensing platform was presented at the annual Biomedical Circuits and Systems Conference (BioCAS), held during October 2019 in Nara (Japan).

“The concept of the technology is that if we have more accessible data for a person of any age, we'll be able to better take care of these patients,” said Lawrence Rhein, MD, chair of the UMASS department of pediatrics. “The idea of noninvasive, untethered, accessible data collection opens up a whole new world of care, enabling sick, hospitalized babies to be untethered from wired sensors, so they can more easily and frequently be examined, held, and even allowed to go home.”

PaO2, which indicates the amount of oxygen dissolved in the blood, provides vital indication of the lungs' effectiveness, and is a more accurate indicator of respiratory health than the simple oxygen saturation (SpO2) measure, which can be easily taken with a pulse oximetry device gently clamped onto a finger.

Related Links:
Worcester Polytechnic Institute
University of Massachusetts Medical School


Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Information Management System
Innovian Anesthesia

Print article

Channels

Surgical Techniques

view channel
Image: The Early Bird Bleed Monitoring System provides visual and audible indicators of the onset and progression of bleeding events (Photo courtesy of Saranas)

Novel Technology Monitors and Lowers Bleeding Complications in Patients Undergoing Heart Procedures

Bleeding complications at the femoral access site can significantly hamper recovery, affecting the success of procedures, patient satisfaction, and overall healthcare costs. It is crucial for surgeons... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.