We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App





Designing COVID-19 Vaccine That Partially Mimics Structure Of SARS-CoV-2 Virus Could Increase Its Effectiveness

By HospiMedica International staff writers
Posted on 29 Oct 2020
Print article
Image: A close-up view of the RBD particle vaccine (green) (Photo courtesy of McGill University)
Image: A close-up view of the RBD particle vaccine (green) (Photo courtesy of McGill University)
A research team at University at Buffalo (Buffalo, NY, USA) has discovered a technique that could help increase the effectiveness of vaccines against the novel coronavirus, the virus that causes COVID-19.

Amidst active efforts to develop an effective COVID-19 vaccine, the University at Buffalo-led research team believes that one answer might lie in designing vaccines that partially mimic the structure of the virus. One of the proteins on the virus - located on the characteristic COVID spike has a component called the receptor-binding domain, or RBD, which is its “Achilles heel.” Antibodies against this part of the virus have the potential to neutralize the virus. The team hypothesized that by converting the RBD into a nanoparticle (similar in size to the virus itself) instead of letting it remain in its natural form as a small protein, it would generate higher levels of neutralizing antibodies and its ability to generate an immune response would increase.

The team had previously developed a technology that makes it easy to convert small, purified proteins into particles through the use of liposomes, or small nanoparticles formed from naturally-occurring fatty components. In the new study, the researchers included within the liposomes a special lipid called cobalt-porphyrin-phospholipid, or CoPoP. That special lipid enables the RBD protein to rapidly bind to the liposomes, forming more nanoparticles that generate an immune response. The team observed that when the RBD was converted into nanoparticles, it maintained its correct, three-dimensional shape and the particles were stable in incubation conditions similar to those in the human body. When laboratory mice and rabbits were immunized with the RBD particles, high antibody levels were induced. Compared to other materials that are combined with the RBD to enhance the immune response, only the approach with particles containing CoPoP gave strong responses. Other vaccine adjuvant technology does not have the capacity to convert the RBD into particle-form, according to the researchers.

“We think these results provide evidence to the vaccine-development community that the RBD antigen benefits a lot from being in particle format. This could help inform future vaccine design that targets this specific antigen,” said Jonathan F. Lovell, PhD, associate professor in the Department of Biomedical Engineering at UB, the primary investigator on the research.

Related Links:
University at Buffalo

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Vital Signs Monitor
Aurus 10

Print article

Channels

Critical Care

view channel
Image: Researchers have developed an advanced shear-thinning hydrogel for aneurysm repair (Photo courtesy of TIBI)

New Hydrogel Features Enhanced Capabilities for Treating Aneurysms and Halting Progression

Aneurysms can develop in blood vessels in different body areas, often as a result of atherosclerosis, infections, inflammatory diseases, and other risk factors. These conditions lead to chronic inflammation,... Read more

Surgical Techniques

view channel
Image: The living replacement knee will be tested in clinical trials within five years (Photo courtesy of ARPA-H)

Living Knee Replacement to Revolutionize Osteoarthritis Treatment

Osteoarthritis is the most prevalent type of arthritis, characterized by the progressive deterioration of cartilage, or the protective tissue covering the bone ends, resulting in pain, stiffness, and impaired... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.