We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Coronavirus Targets Cells in Lungs, Nose and Intestines, Find MIT Researchers

By HospiMedica International staff writers
Posted on 29 Apr 2020
Print article
Image: This scanning electron microscope image shows SARS-CoV-2 (orange) isolated from a patient in the U.S., emerging from the surface of cells (green) cultured in the lab (Photo courtesy of NIAID-RML)
Image: This scanning electron microscope image shows SARS-CoV-2 (orange) isolated from a patient in the U.S., emerging from the surface of cells (green) cultured in the lab (Photo courtesy of NIAID-RML)
Researchers at the Massachusetts Institute of Technology {(MIT) Cambridge, MA, USA} have identified specific types of cells that appear to be targets of the coronavirus that is causing the COVID-19 pandemic.

Using existing data on the RNA found in different types of cells, the researchers were able to search for cells that express the two proteins that help the SARS-CoV-19 virus enter human cells. They found subsets of cells in the lung, the nasal passages, and the intestine that express RNA for both of these proteins much more than other cells. The researchers hope that their findings will help guide scientists who are working on developing new drug treatments or testing existing drugs that could be repurposed for treating COVID-19.

Much of the data used for the study came from labs that belong to the Human Cell Atlas project, whose goal is to catalog the distinctive patterns of gene activity for every cell type in the human body. The datasets that the MIT team used for this study included hundreds of cell types from the lungs, nasal passages, and intestine. The researchers chose those organs for the COVID-19 study because previous evidence had indicated that the virus can infect each of them. They then compared their results to cell types from unaffected organs.

In the nasal passages, the researchers found that goblet secretory cells, which produce mucus, express RNAs for both of the proteins that SARS-CoV-2 uses to infect cells. In the lungs, they found the RNAs for these proteins mainly in cells called type II pneumocytes. These cells line the alveoli (air sacs) of the lungs and are responsible for keeping them open. In the intestine, they found that cells called absorptive enterocytes, which are responsible for the absorption of some nutrients, express the RNAs for these two proteins more than any other intestinal cell type.

“This may not be the full story, but it definitely paints a much more precise picture than where the field stood before,” said Jose Ordovas-Montanes, a former MIT postdoc who now runs his own lab at Boston Children’s Hospital, and is one of the senior authors of the study. “Now we can say with some level of confidence that these receptors are expressed on these specific cells in these tissues.”

Related Links:
Massachusetts Institute of Technology (MIT)

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
Transducer Covers
Surgi Intraoperative Covers

Print article

Channels

Critical Care

view channel
Image: The Gastric Alimetry system is a medical device which performs Body Surface Gastric Mapping (Photo courtesy of Alimetry)

AI-Powered Wearable Device Revolutionizes Gut Health Diagnosis

Approximately one in 10 individuals experience chronic gut symptoms, including abdominal pain, chronic indigestion, nausea, and vomiting. The current diagnostic process for these conditions is slow and... Read more

Surgical Techniques

view channel
Image: The DigiLoupes Headset (Photo courtesy of Ocutrx Technologies)

Innovative Headset Featuring Advanced AR, XR and Pancake Lens Technology to Transform Surgery

A cutting-edge headset incorporating advanced augmented reality (AR), XR, and state-of-the-art lens technologies has been developed to replace traditional "chin-on-chest" medical loupes, offering a significant... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.