We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





University of Pittsburgh School of Medicine’s COVID-19 Vaccine Candidate Shows Promise

By HospiMedica International staff writers
Posted on 16 Apr 2020
Print article
Image: Microneedle Array Vaccine (Photo courtesy of University of Pittsburgh School of Medicine)
Image: Microneedle Array Vaccine (Photo courtesy of University of Pittsburgh School of Medicine)
Scientists from the University of Pittsburgh School of Medicine (Pittsburgh, PA, USA) have announced a potential vaccine against SARS-CoV-2, which when tested in mice, delivered through a fingertip-sized patch, produces antibodies specific to SARS-CoV-2 at quantities thought to be sufficient for neutralizing the virus.

In comparison to the experimental mRNA vaccine candidate that has just entered clinical trials, the new vaccine called PittCoVacc, short for Pittsburgh Coronavirus Vaccine, follows a more established approach, using lab-made pieces of viral protein to build immunity in the same way the current flu shots work. The scientists also used a novel approach to deliver the drug, called a microneedle array, to increase potency. This array is a fingertip-sized patch of 400 tiny needles that delivers the spike protein pieces into the skin, where the immune reaction is strongest. The patch goes on like a Band-Aid and then the needles — which are made entirely of sugar and the protein pieces — simply dissolve into the skin.

The system also is highly scalable. The protein pieces are manufactured by a “cell factory” — layers upon layers of cultured cells engineered to express the SARS-CoV-2 spike protein — that can be stacked further to multiply yield. Purifying the protein also can be done at industrial scale. Mass-producing the microneedle array involves spinning down the protein-sugar mixture into a mold using a centrifuge. Once manufactured, the vaccine can sit at room temperature until it’s needed, eliminating the need for refrigeration during transport or storage.

When tested in mice, PittCoVacc generated a surge of antibodies against SARS-CoV-2 within two weeks of the microneedle prick. Those animals have not yet been tracked over the long term, but the researchers noted that the mice which received their MERS-CoV vaccine produced a sufficient level of antibodies to neutralize the virus for at least a year, and so far the antibody levels of the SARS-CoV-2 vaccinated animals seem to be following the same trend. Importantly, the SARS-CoV-2 microneedle vaccine maintains its potency even after being thoroughly sterilized with gamma radiation — a key step toward making a product that is suitable for use in humans. The researchers were able to act quickly because they had already laid the groundwork during earlier coronavirus epidemics. The scientists are now in the process of applying for an investigational new drug approval from the US Food and Drug Administration in anticipation of starting a phase I human clinical trial in the next few months.

“We had previous experience on SARS-CoV in 2003 and MERS-CoV in 2014. These two viruses, which are closely related to SARS-CoV-2, teach us that a particular protein, called a spike protein, is important for inducing immunity against the virus. We knew exactly where to fight this new virus,” said co-senior author Andrea Gambotto, M.D., associate professor of surgery at the Pitt School of Medicine. “That’s why it’s important to fund vaccine research. You never know where the next pandemic will come from.”

Related Links:
University of Pittsburgh School of Medicine

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Electric Cast Saw
CC4 System
New
Transcatheter Heart Valve
SAPIEN 3 Ultra

Print article

Channels

Critical Care

view channel
Image: The Gastric Alimetry system is a medical device which performs Body Surface Gastric Mapping (Photo courtesy of Alimetry)

AI-Powered Wearable Device Revolutionizes Gut Health Diagnosis

Approximately one in 10 individuals experience chronic gut symptoms, including abdominal pain, chronic indigestion, nausea, and vomiting. The current diagnostic process for these conditions is slow and... Read more

Surgical Techniques

view channel
Image: The DigiLoupes Headset (Photo courtesy of Ocutrx Technologies)

Innovative Headset Featuring Advanced AR, XR and Pancake Lens Technology to Transform Surgery

A cutting-edge headset incorporating advanced augmented reality (AR), XR, and state-of-the-art lens technologies has been developed to replace traditional "chin-on-chest" medical loupes, offering a significant... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.