We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3D Bioprinter Produces Functional Human Skin

By HospiMedica International staff writers
Posted on 09 Feb 2017
A novel three-dimensional (3D) printing technology uses human components to produce active skin that makes its own collagen.

Researchers at Hospital General Universitario Gregorio Marañón, Universidad Carlos III de Madrid, and other institutions 3D printed a human bilayered (epidermis and ermis) skin using bioinks containing human plasma, primary human fibroblasts, and keratinocytes obtained from skin biopsies. More...
The researchers were able to generate 100 cm2--a standard P100 tissue culture plate--of printed skin in less than 35 min, including the 30 minutes required for fibrin gelation.

When using histological and immunohistochemical methods to analyze the structure and function of the printed skin in immunodeficient mice, they found that both in the 3D and in vitro cultures it was similar to human skin and, furthermore was indistinguishable from hand-made dermo-epidermal equivalents, which usually take three weeks to fabricate. The researchers claim that the human skin produced is adequate for transplant into patients, or for testing drugs and cosmetics. The study describing the technique was published on December 5, 2016, in Biofabrication.

“Knowing how to mix the biological components, in what conditions to work with them so that the cells don't deteriorate, and how to correctly deposit the product is critical to the system,” said study co-author Juan Francisco del Cañizo, MD, of Gregorio Marañón Hospital. “It prints the epidermis, including the stratum corneum, the protective outermost layer comprising keratinized cells. Then, it prints the deeper, thicker dermis, complete with fibroblasts that make collagen.”

“This method of bioprinting allows skin to be generated in a standardized, automated way, and the process is less expensive than manual production,” said Alfredo Brisac, CEO of BioDan Group, a private Spanish bioengineering firm that is commercializing the technology. “The 3D bioprinter has been submitted for approval by various European regulators. The approval is needed to ensure that the printed skin is suitable for transplanting into patients with burns and other skin conditions.”


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Neonatal Ventilator Simulation Device
Disposable Infant Test Lung
LED Surgical Lamp
ACEMST35/57
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: Carotid artery is the blood vessel that supplies oxygen-rich blood to the brain (Photo courtesy of Bruce Blaus/Wikimedia Commons)

Surgical Treatment of Severe Carotid Artery Stenosis Benefits Blood-Brain Barrier

Carotid artery stenosis occurs when fatty or calcified deposits narrow the carotid arteries, the primary vessels supplying oxygen-rich blood to the brain. This condition reduces blood flow, increases the... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.