We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




World’s First Microscopic Probe to Revolutionize Early Cancer Diagnosis

By HospiMedica International staff writers
Posted on 16 Apr 2024
Print article
Image: The endoscopic device can 3D image the stiffness of individual biological cells and complex organisms (Photo courtesy of University of Nottingham)
Image: The endoscopic device can 3D image the stiffness of individual biological cells and complex organisms (Photo courtesy of University of Nottingham)

In the early stages of cancer, the cells are significantly softer than normal cells, which facilitates their movement through small spaces and contributes to the rapid spread of the disease, a process known as metastasis. As they spread, these cells alter their surrounding environment to form stiff tumors that offer protection against external threats. Researchers have now developed a groundbreaking endoscopic device capable of 3D imaging the stiffness of individual biological cells and complex organisms, an innovation with the potential to revolutionize early cancer detection and treatment.

The new technology developed by researchers at the University of Nottingham (Nottingham, UK) allows for stiffness measurement of these individual cells using a hair-thin endoscopic probe. This advancement enables, for the first time, the performance of histology (or investigating microscopic cellular tissue) based on abnormal stiffness at the single cell level inside the body. The device achieves exceptionally high imaging resolution by utilizing a phenomenon known as Brillouin scattering, where a laser beam interacts with the natural stiffness of the material being examined, allowing it to detect the stiffness of objects down to billionths of a meter (nanometers).

The application of this technology aided biologists in visualizing the 3D stiffness of a microscopic organism, Caenorhabditis elegans, a nematode commonly used in scientific research. This tool provided detailed visual and material information about a previously difficult-to-image part of the organism’s anatomy, the cuticle, which had only been imaged under non-living conditions using electron microscopes until now.

“We aim to develop new endoscopic technologies that make diagnostics faster, safer, and clearer for both patients and clinicians. Typically, histopathology requires destructive, invasive biopsies that are not only uncomfortable and potentially damaging for the patient, but require significant logistics such as chemical processing, transportation, and analysis,” said Dr. Salvatore La Cavera III from the University of Nottingham. “Our device makes it possible to ‘feel for a stiff lump,’ but on a single cellular scale, meaning we could catch cancer early at microscopic cell scales rather than large malignant tumor scale. It is non-invasive, non-toxic, and very promisingly, is related to technology that can quantitatively determine the presence of cancer cells using artificial intelligence – providing a chronically understaffed area with a much-needed solution to a real-world problem that the industry has faced for decades.”

Related Links:
University of Nottingham

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Reusable Powered Coverlet
Skin IQ 365

Print article

Channels

Critical Care

view channel
Image: The new device means fewer heart surgeries for babies (Photo courtesy of Cedars-Sinai)

Specialized Stent that Expands as Child Grows to Result in Fewer Heart Surgeries for Babies

Approximately 40,000 babies are born each year in the United States with a heart defect, according to the U.S. Centers for Disease Control and Prevention. Many of these infants have narrowing in either... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.