We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Nonlinear Acoustic Analysis Could Help Destroy Kidney Stones

By HospiMedica International staff writers
Posted on 04 Mar 2015
Print article
Mathematical analysis and simulation of models governing the propagation of sound in fluids could enhance lithotripsy, according to a new study.

Researchers at Alpen-Adria-Universität (Klagenfurt am Wörthersee, Austria) are developing an application-oriented comprehensive mathematical analysis of the underlying model equations the propagation of sound in fluids, since n-depth numerical simulation and optimization could result in a better understanding and control of the physical effects and complication risks during medical applications. As such, the mathematical analysis of the underlying partial differential equation (PDE) models of high intensity focused ultrasound (HIFU) is crucial for proper design of devices, such as in lithotripsy.

For example, optimization methods can be used to design the three dimensional (3-D) geometrical shape an acoustic lens so that the acoustic pressure generated is focused directly onto a kidney stone, while the surrounding tissue remains intact. Another issue the researchers plan to investigate is the coupling of nonlinear acoustics to other physical fields, such as excitation mechanisms, focusing devices, heat generation, and interaction with the kidney stones. The project is supported by the Austrian Science Fund (FWF; Vienna, Austria).

“These models are based on partial differential equations. The better our grasp of these equations, the more successfully one can avoid complications during the application of ultrasound technology,” said lead author Rainer Brunnhuber, MSc, of the department of mathematics. “To give an example, mathematical optimization methods can be used to enhance the shape of an acoustic lens in such a way that the acoustic pressure is focused precisely on the location of the kidney stone, and the surrounding tissue retains as little damage as possible.”

Nonlinear acoustics deal with large amplitude sound waves that require using comprehensive governing equations of fluid dynamics (for sound waves in liquids and gases) and elasticity (for sound waves in solids). The effects of nonlinearity cause sound waves to become distorted as they travel through a material, but geometric spreading and absorption effects usually overcome the self-distortion, so linear behavior usually prevails. Nonlinear acoustic propagation therefore occurs only for very large amplitudes and only near the source.

Related Links:

Alpen-Adria-Universität
Austrian Science Fund


Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
X-Ray QA Meter
Piranha CT

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.