We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




New Signaling Method Enables Precise Localization of Miniature Robots and Surgical Instruments inside Body

By HospiMedica International staff writers
Posted on 03 Apr 2024
Print article
Image: Miniature robot with built-in SMOL tracker, the built-in magnet is only 1 mm in size (Photo courtesy of DKFZ)
Image: Miniature robot with built-in SMOL tracker, the built-in magnet is only 1 mm in size (Photo courtesy of DKFZ)

The advent of nanorobots capable of autonomous movement within the human body, tasked with drug delivery, conducting tissue measurements, or executing minor surgeries, marks a significant leap in medical technology. While scientists have developed magnetically driven prototypes capable of traversing through muscle tissue, the vitreous humor of the eye, or the vascular system, the real-time monitoring and control of these robots deep within the body remains a challenge. Conventional imaging methods fall short: MRI's temporal resolution is too low, CT scans carry the risk of radiation exposure, and ultrasound's effectiveness is diminished by strong scattering of sound waves. Scientists have now developed a signaling method based on an oscillating magnet that can significantly improve such medical applications.

A team of scientists at the German Cancer Research Center (DKFZ, Heidelberg, Germany) has developed a tiny device based on a magnetic oscillator—essentially a magnet that vibrates mechanically within a millimeter-sized housing, set into motion by an external magnetic field. This signal can be recorded using magnetic sensors when the oscillation subsides again, based on the same principle applied to nuclear magnetic resonance in MRI. This technique, dubbed "Small-Scale Magneto-Oscillatory Localization" (SMOL), boasts the capability to accurately determine the position and orientation of the small device from a considerable distance (beyond 10 cm), with outstanding precision (under 1 mm), and in real-time.

As compared to conventional static magnet-based tracking methodologies, SMOL can detect movements in all six degrees of freedom and with significantly higher signal quality. Given its reliance on weak magnetic fields, it poses no risk to human health, offers wireless operation, and seamlessly integrates with a wide variety of existing medical devices and imaging technologies, heralding a new era in the precision and safety of internal medical procedures.

"There are many possible applications for the SMOL method," said research scientist Felix Fischer. "We have already integrated the system into miniature robots and instruments for minimally invasive surgery. A combination with capsule endoscopes or the marking of tumor tissue for very precise radiotherapy would be conceivable. Our method could also provide a decisive advantage for fully automated surgical robotics or augmented reality applications."

Related Links:
DKFZ

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Glassware Washer
Tiva 10-1VL

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.