Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Remote-Controlled Micro-Robots Advance Medical Procedures

By HospiMedica International staff writers
Posted on 17 Aug 2016
Miniature robots that enter the human body could eventually replace invasive, often complicated surgery, optimizing the treatment of a variety of diseases.

Under development at Ecole Polytechnique Fédérale de Lausanne (EPFL; Switzerland) and ETH Zurich (Switzerland), the biologically inspired microrobots were designed to mimic the parasitic protozoan trypanosomes, which causes African trypanosomiasis, also known as sleeping sickness. Trypanosomes uses a flagellum for propulsion, but hides it away once inside a person’s bloodstream as a survival mechanism. The prototype microrobot robot also has a bacterium-like flagellum that enables it to swim.

Unlike conventional robots, the microrobots are soft, flexible, and motor-less, made of a biocompatible hydrogel and magnetic nanoparticles. They are controlled via an integrated manipulation platform that can remotely control their mobility with electromagnetic fields, and can cause them to shape-shift when heat is applied, unfolding to their pre-determined shape. Once the final shape is achieved, the magnetic nanoparticles make them move and swim when an electromagnetic field is applied. The microrobots can then complete their mission, delivering drugs or performing precision tasks such as clearing clogged-up arteries.

Once the mission is completed, they can be heated with a laser, resulting in the flagellum wrapping around the body. To build a microrobot, the nanoparticles are placed inside layers of a biocompatible hydrogel. An electromagnetic field is then applied to orientate the nanoparticles in different parts of the construct, followed by a polymerization step to solidify the hydrogel. It is then placed in water, folding in specific ways depending on the orientation of the nanoparticles inside the gel to form the final overall 3D form. The study was published on July 22, 2016, in Nature Communications.

“Both a bacterium’s body and its flagellum play an important role in its movement. Our new production method lets us test an array of shapes and combinations to obtain the best motion capability for a given task,” said study co-author Mahmut Selman Sakar, PhD, of EPFL. “Our research also provides valuable insight into how bacteria move inside the human body and adapt to changes in their microenvironment.”

Related Links:
Ecole Polytechnique Fédérale de Lausanne
ETH Zurich

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Illuminated Retractor System
HandLite
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get complete access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.