We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




3D Printing Provides Customized Insoles for Diabetics

By Daniel Beris
Posted on 09 Dec 2016
Print article
Image: Three-dimensional printing can manufacture precise insoles for diabetic patients (Photo courtesy of UMSICHT).
Image: Three-dimensional printing can manufacture precise insoles for diabetic patients (Photo courtesy of UMSICHT).
A new technique to digitalize the mechanical properties of insoles and use three-dimensional (3D) printing to manufacture them could help avoid diabetic foot ulcers.

Developed by researchers at the Fraunhofer Institute for Mechanics of Materials (IWM; Freiburg, Germany) and the Fraunhofer Institute for Environmental, Safety, and Energy Technology (UMSICHT; Oberhausen, Germany), laser-assisted construction of customized footwear (LAUF) is based on the physical properties of thermoplastic polyurethane (TPU). The optimization of the 3D structure and shape of TPU, when used for insoles, determines how soft or rigid the insoles are.

3D foot mapping data is processed using application-oriented load simulations to resolve which structures are needed, and where to achieve the desired properties in the insole. The data is then sent to the 3D printer, where the insoles are printed using selective additive laser sintering. Once an insole has been printed, it is returned the IWM, where it is tested to the point of failure using tensile, abrasion, and bending tests. The first prototypes have already been produced in this way, and the researchers predict that within a few years, insoles can be produced at greatly reduced cost.

“Digital foot mapping is already common practice. As part of this project, we have now also completely digitalized the insole production process. Using newly developed software, the orthopedic shoemaker can design an insole for an individual patient and can print out the result on a 3D printer,” said Tobias Ziegler, PhD, of the IWM. “Where does an insole need to be soft, or more rigid? By altering the structure type, we can precisely determine the rigidity of the insole.”

Diabetes patients often suffer from nerve and circulation problems in the feet, which reduce their perception of pain. The nerve pathways that ensure that weight is automatically transferred from one foot to the other during prolonged standing are disrupted, and as a result, diabetics do not notice that their toes, heels, or the balls of their feet are too heavily loaded. The foot receives no relief, and pressure sores, ulcers, and infections may go unnoticed. Serious cases may even lead to amputation.

Related Links:
Fraunhofer Institute for Mechanics of Materials
Fraunhofer Institute for Environmental, Safety, and Energy Technology
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Video Laryngoscope
SH-VL1

Print article

Channels

Surgical Techniques

view channel
Image: LUMISIGHT and Lumicell DVS offer 84% diagnostic accuracy in detecting residual cancer (Photo courtesy of Lumicell)

Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery

Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.