We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Events

13 Jun 2024 - 15 Jun 2024
18 Jun 2024 - 20 Jun 2024

Global Mechanical Ventilator Market to Surpass USD 11.5 Billion by 2027 Due to Increasing ICU Admissions

By HospiMedica International staff writers
Posted on 19 Apr 2022
Print article
Image: Increasing number of ICU admissions is augmenting demand for mechanical ventilators (Photo courtesy of Pexels)
Image: Increasing number of ICU admissions is augmenting demand for mechanical ventilators (Photo courtesy of Pexels)

The global mechanical ventilator market is expected to register a CAGR of 12.7% during the period 2021-2027 to reach USD 11.7 billion by 2027, driven by an increase in the prevalence of chronic respiratory diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), asthma, bronchitis, and other lung disorders, as well as rise in the number of hospitals and diagnostic centers. The increasing population of aged individuals who are susceptible to respiratory disorders along with technological advancements in mechanical ventilation will further fuel market growth. However, the high costs associated with mechanical ventilators and the risk of ventilator-associated diseases such as nosocomial pneumonias are expected to restrict market growth during the forecast period.

These are the latest findings of Research and Markets (Dublin, Ireland), a market research firm.

Mechanical ventilator is a device used to support the breathing of patients who are critically ill and unable to breathe on their own. A hollow tube, which acts as an artificial airway, is inserted into the patient's mouth and down into the trachea to connect the patient to the ventilator. In addition, mechanical ventilators are used to assess static compliance of airway resistance and respiratory system abnormalities as a diagnostic tool. The mechanical ventilator is a life-saving device in medical emergencies and surgeries and is majorly used for patients with spinal cord injury, stroke, respiratory disorders, or other disorders.

Purchasing a fleet of ventilators is a major decision for hospitals. The cost of acquiring new equipment is part of that decision-making process. Several ventilator options are available to care for a variety of patient needs such as home care ventilators, transport ventilators, low, medium, and high-acuity ventilators, high-frequency ventilators, non-invasive positive pressure ventilation/continuous positive airway pressure (NPPV/CPAP), bi-level positive airway pressure (BIPAP) systems. Different ventilators also have different gas delivery designs, including turbine-based air supply and proportional solenoid (PSOL) valve control, or a combination of the two systems. The costs for these ventilators can range from USD 5,000 to USD 50,000. Premium or high-acuity ventilators which are most commonly found in hospital ICUs typically have a PSOL gas delivery design and can currently cost between USD 25,000 and USD 50,000.

The number of innovations in intensive care unit (ICU) ventilation has been soaring. Potential optimization of ventilation bundles begins by re-investigating the critical constituents of respiratory mechanics. Automation of ventilation settings could result in a solution. Closed-loop systems have been categorized into clear, physiological signal-based and explicit computerized protocols or ECP. ECP systems utilize numerous inputs to curb one or numerous ventilator outputs. Certain examples of automation of mechanical ventilation include Adaptive Support Ventilation (ASV; which titrates ventilator output on a breath-to-breath basis offering a preset level of minute ventilation while reducing work of breathing), Intelligent ASV (an expansion of ASV, inclusive of an automatized choice of FiO2 and PEEP), and SmartCarePS (regulation of pressure support level based on the patient's respiratory features). Additional examples accessible on the market (although not completely automatized) are proportional assisted ventilation plus (PAV+) and NAVA. The modes of ventilation include non-invasive ventilation and invasive ventilation.

The burden of respiratory diseases is rising globally, owing to numerous factors such as smoking, obesity, and lifestyle changes. The increasing demand for critical care equipment due to the growing number of ICU admissions in the emerging and developed countries is anticipated to drive the growth of the mechanical ventilator market. Additionally, due to the impact of COVID-19, there has been an increase in the number of ICU admissions, resulting in a higher need for critical care equipment, including mechanical ventilators. COVID-19 infection is associated with respiratory failure, and requires critical care with ventilator support. Mechanical ventilation is regularly employed to oxygenate seriously ill COVID-19 patients. In addition, the new delta and omicron variants of COVID-19 with a high transmission rate have increased the risk of repeated waves across the world. The initiatives taken by manufacturers of mechanical ventilators and by various governments to boost production have helped fulfill the high requirement for ventilators during the pandemic.

Related Links:
Research and Markets 

Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
ECG Monitoring Solution
Bardy CAM Patch

Print article

Channels

Critical Care

view channel
Image: A full readout from the new AI algorithm that helps read EEGs (Photo courtesy of Duke University)

AI Doubles Medical Professionals’ Accuracy in Reading EEG Charts of ICU Patients

Electroencephalography (EEG) readings are crucial for detecting when unconscious patients may be experiencing or are at risk of seizures. EEGs involve placing small sensors on the scalp to measure the... Read more

Surgical Techniques

view channel
Image: GI procedures can produce dangerous levels of smoke (Photo courtesy of 123RF)

Study Warns Against Dangerous Smoke Levels Produced During Endoscopic Gastrointestinal Procedures

Healthcare professionals involved in certain smoke-generating endoscopic gastrointestinal procedures, such as those using electrical current to excise polyps, may be exposed to toxin levels comparable... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.